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ABSTRACT

SIMULATING LASER PULSE PROPAGATION UNDER OPTIMIZED

CONDITIONS FOR HIGH-HARMONIC GENERATION

Matthew D. Turner

Department of Physics and Astronomy

Bachelor of Science

We numerically simulate the propagation of a high-intensity laser pulse to

investigate the role of nonlinear effects in our high-harmonics generation ex-

periments. The model uses an approximation of the nonlinear wave equation,

which includes the Kerr effect and plasma generation, to model the evolution

of an electric field envelope as it propagates through the region of interest.

The initial condition for the field is calculated from Fresnel integrals to de-

crease computation time and include the effects of a aperture located before

the focusing lens.

Numerical results for the radial fluence profile, fluence full-width at half-

maximum, spectral shift, and ionization levels agree very well with previous

experimental results. Removal of the nonlinear effects from the propagation

code shows that the Kerr effect has a negligible influence in our setup. The

simulations demonstrate that plasma generation is responsible for an observed



v

double focus in the fluence.
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Chapter 1

Introduction

1.1 High-Harmonic Generation

First observed in 1987 by McPherson et al. [1], laser high-harmonic generation can

occur when a high-intensity laser pulse interacts with the outer electrons of atoms

to produce radiation of a shorter wavelength, as depicted in Fig. 1.1. The out-

put radiation has frequencies that are odd multiples of the frequency of the input

(λharmonic = λlaser/q, where q is an odd integer), is coherent (i.e, a highly directional

beam), and has a linear polarization matching that of the input beam. The spectrum

of the generated output often reaches into the extreme ultraviolet (EUV), with wave-

lengths ranging down to a few nanometers. Because EUV light is quickly absorbed

by most substances, the harmonics must propagate in a vacuum after generation if

they are to be used or measured.

High-harmonic generation is being investigated as a source of useful EUV radiation

for various applications. Computer chip production relies on photolithography, which

is limited by the wavelength of the light used to expose the photoresist. Using EUV

radiation would allow for much smaller circuit traces than those possible with visible

1
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Figure 1.1 High-harmonics are generated by focusing a high-intensity laser

pulse into a noble gas.

and near-visible UV light. A characterized and controllable source of EUV light is also

needed for the testing of EUV optics, which are used in astronomical observations

and in EUV lithography. Other sources of EUV light are synchrotron beam lines

and laser-generated plasmas. High-harmonic generation fills a gap between these two

types of sources, as it is much more economical than a synchrotron and provides more

versatility than a plasma source by offering a greater spectral range and controllable

polarization. Although the power output of high-harmonic generation is much too

low for use in lithographic applications, it is well suited for testing EUV optics.

A polarimeter employing high-harmonic generation as its source of EUV light has

recently been constructed at Brigham Young University [2].

1.2 Phase Matching

High-harmonics are generated by an interaction between the electric field of the in-

coming laser pulse and the valence electrons of the atoms being used (typically a

noble gas). The phase of the harmonics depends on the phase of the laser pulse

at the point of generation. Slight spatial variations in the phase of the incoming
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pulse can therefore translate into large variations in the phase of the harmonics, as

φharmonics = q φlaser. These large variations can result in destructive interference of the

generated light, diminishing the amount of high-harmonic output. Phase variations

are inevitable, due to the Gouy shift, intensity-dependent phase variation, and the

high-intensity phenomena of the Kerr effect and plasma generation [3]. All of these

sources of phase variation can combine to result in low conversion efficiencies.

1.3 Previous Work at BYU

In 1997, Prof. Peatross’s group, proposed using counterpropagating laser pulses to

disrupt the generation of harmonics in specific regions of the laser focus [4]. This

technique uses counterpropagating light that is much weaker than the main pulse to

eliminate harmonic generation in selected regions. The use of a counter-propagating

pulse also provides a method for probing the extent of the region where harmonics are

generated [3]. For her master’s thesis, Julia Sutherland determined that the length of

the high-harmonic generation region in helium was on the order of 1 cm in our setup,

much longer than expected [3]. The group also found that inserting an aperture before

the focusing lens, as shown in Fig. 1.2, boosts harmonic output in our setup by over

an order of magnitude, much more than other groups have observed [5–8].

For his masters thesis, John Painter measured the spatial profile of the laser pulse

in the BYU setup. The pulse passes through an 9 mm aperture before the focusing

mirror, which optimized the harmonic output. Measurements of the beam width in

the region of the focus provided what was initially thought to be direct evidence of

filamentation, as explained in the next section. Fig. 1.3 shows data collected in the

beam focus region for beam propagation under vacuum and in 80 torr of helium. The

latter case shows a dual focus, with the beam narrowing, enlarging, and narrowing
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Figure 1.2 Variation of the diameter of an aperture on an incoming laser

pulse was shown by Sutherland et al. to influence high-harmonic generation
efficiencies.
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Figure 1.3 Experimental beam-width data showing the beam profile (red)

and half-maximum (blue) for (a) propagation in vacuum and (b) propagation
in 80 torr of Helium. Region (i) is the area of optimal harmonic generation [9].
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again before finally spreading after the focal region. This phenomenon is due to

nonlinear effects and is investigated numerically in this thesis. The area between the

two foci was also found to be the region of brightest harmonic generation.

1.4 Nonlinear Index and Self-focusing

There are two nonlinear effects that play important roles in the propagation of high-

intensity pulses. One is the Kerr effect, which is an intensity-dependent correction to

the index of refraction of the medium, as given in

n = n0 + n2I, (1.1)

where n is the effective index of refraction, n0 is the usual index, n2 is the Kerr index,

and I is the intensity of the propagating light at the point of interest. In the case of

a high-intensity beam or pulse, the increase in the optical index in the more intense

regions can cause an effect of self-focusing.

The second nonlinear effect of interest is rapid plasma generation and the resultant

change to the index of refraction. As the pulse passes through the gas, electrons are

ionized from of the atoms by the strong electric field. Some of the electrons are

smashed back into their parent atom, resulting in harmonic generation, but many

atoms remain ionized. The presence of these ionized atoms, or plasma, creates a

frequency-dependent index of refraction according to

ηplasma =

√
1−

ω2
p

ω2
, (1.2)

where ωp, the plasma frequency, is given by

ω2
p =

q2
eN

meε0

(1.3)

with N , qe, and me being the electron density, charge, and mass, respectively. This

change to the optical index results in a defocusing effect.
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Figure 1.4 An example of filamentation taken from Chiron et al. [11]

.

When both the Kerr effect and plasma generation are present, filamentation can

occur. Filamentation is a phenomenon resulting from the interplay of the self-focusing

effect of the Kerr index and the defocusing effect of plasma generation, as exemplified

in Fig. 1.4. As the pulse first nears the focus, the Kerr effect causes increased focusing,

raising the peak intensity. The higher on-axis intensity increases the plasma frequency,

defocusing the light and lowering the rate of plasma generation. This allows the

Kerr effect to again dominate, focusing the light again. The process repeats until

sufficient energy is lost to prevent self-focusing. The interplay between the two effects

sometimes lasts for distances much larger than the Rayleigh range before before the

pulse finally spreads. Filaments have been observed in air with lengths over 300

m [10]. When we saw the double-focusing in our earlier laser measurements, we

suspected this type of Kerr-style focusing. However, as will be demonstrated in this

thesis, the Kerr nonlinear index is not needed to explain our observations. This agrees

with the expectation that the Kerr index is negligible for our gas density and peak

power.
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1.5 Nonlinear Simulations

Many groups have used numerical simulations to model high-intensity pulse propa-

gation [7, 12–20]. Most have investigated long-range filamentation in air, but oth-

ers have performed similar simulations in other media, including noble gases. The

primary focus of these simulations, however, has been to investigate long-range fila-

mentation and the behavior of optical pulses at higher intensities, without addressing

the issue of high-harmonic generation. A limited number of groups have numeri-

cally investigated high-harmonic generation, with both one-dimensional models [5]

and three-dimensional models [21–24].

Some groups have used models to investigate the role of beam geometry on the

optimization of on-axis harmonic output [5, 6]. We have found no literature, how-

ever, reporting on the use of an apertured pulse as the initial condition for a three-

dimensional simulation. The one paper that does mention using an apertured pulse

as the initial condition of a three-dimensional simulation only roughly approximates

the pulse geometry by means of a modified Gaussian pulse [24], which fails to account

for diffraction effects caused by the aperture.

1.6 Overview

Although many groups working on high-harmonic generation accept the beneficial

effects of a prefocus aperture, only a few groups have done theoretical work to inves-

tigate how an aperture can improve harmonic generation efficiencies. To study this

effect, I developed a numerical code to simulate an apertured pulse and to propagate

it with both linear and nonlinear effects. This code, as will be detailed in the Chap-

ter 2, uses the Crank-Nicolson method to numerically solve the nonlinear paraxial

slowly-varying wave equation beginning with an initial condition generated by Fres-
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nel integrals. The results of the simulation, as given in Chapter 3, agree with our

experimental measurements of the pulse profile, spectral shift, and losses of energy to

ionization. It also explains the dual-focusing seen in Fig. 1.3, a major accomplishment

of this project. The code can be used to investigate phase-matching zones within the

pulse and determine optimal experimental setup parameters.



Chapter 2

Numerical Methods

This chapter provides the theoretical background and an overview of the numerical

methods used to simulate the propagation of a high-intensity laser pulse through a

gas. The numerical code presented here is based on the scheme presented by Chiron

et al. in 1999 [11], which was developed to model pulse propagation in air. MatlabR©

was used to both run the propagation code and create graphical representations of

the results.

2.1 The Wave Equation

To construct the numerical scheme for our simulation, we begin with the inhomoge-

neous scalar wave equation

∇2E − 1

c2

∂2E
∂t2

=
ω2

c2
(1− n2)E , (2.1)

where E is the scalar electric field. When the pulse length is much longer than a

wavelength, a slowly-varying-envelope approximation (SVEA) may be used. The

field of a wave packet is represented by a plane wave multiplied by a time-dependent

9



2.1 The Wave Equation 10

complex scalar spatial envelope E:

E(r, t) = E(r, t)ei(k0z−ω0t). (2.2)

Inserting (2.2) into (2.1), dividing out the exponential term, and assuming ∂2E/∂t2 �

(2iω0)∂E/∂t (i.e., the features of E are much larger than the wavelength associated

with ω0) results in the SVEA form of the wave equation:

∇2E(r, t) + 2ik0
∂E(r, t)

∂z
+

2iω0

c2

∂E(r, t)

∂t
=

ω2
0

c2
(1− n2)E. (2.3)

Assuming radial symmetry eliminates the azimuthal term of the Laplacian. The

paraxial approximation of ∂2E/∂z2 � 2ik0∂E/∂z eliminates the axial term, resulting

in the paraxial SVEA wave equation:

∇2
rE(r, t) + 2ik0

∂E(r, t)

∂z
+

2iω0

c2

∂E(r, t)

∂t
=

ω2
0

c2
(1− n2)E. (2.4)

The index of refraction n has two parts, the usual index of refraction n0, and the

nonlinear adjustment ∆n. Assuming that n2
0 ≈ 1 and ∆n2 � 2n0∆n,

∇2
rE(r, t) + 2ik0

∂E(r, t)

∂z
+

2iω0

c2

∂E(r, t)

∂t
+ 2

ω2
0

c2
n0∆nE = 0. (2.5)

(A derivation of the last nonlinear term in Eq. (2.5) is also given in Ref. [25].) The

nonlinear change to the optical index contains two terms involving the local intensity,

I, and the local plasma frequency, ωp:

∆n = n2I −
ω2

p

2ω2
0

. (2.6)

Using a numerical method to solve (2.5) directly would present a problem–solving

this equation with sufficient resolution for the entire region of interest would require

an enormous amount of memory and processing power. In order to circumvent these

problems, a conventional technique substitutes scaled moving-frame variables for the

variables in the equation [11, 26]. Substituting η = z/(c/ω0), τ = ω0t − ηω0/(k0c),
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and ρ = r/(c/ω0) into Eq. (2.5) eliminates units from the equation, normalizes mag-

nitudes, and puts the equation into a frame that moves along the axis of propagation

at the same speed as the pulse. The coordinate τ is called the the local time and η

is the propagation distance. The substitution results in the final form that I used for

my numerical computation:

2ik0c

ω0

∂E

∂η
+∇2

ρE + 2n0∆nE = 0 (2.7)

2.2 Differentiation Scheme

To solve (2.7) I employed the Crank-Nicolson differentiation scheme. The Crank-

Nicolson method is implicit and is inherently stable [27]. It has been used for com-

parable simulations by other groups. One problem with using the Crank-Nicolson

scheme, however, comes from the nonlinear term in the equation. The Crank-Nicolson

scheme solves implicitly by averaging in time when calculating spatial derivatives, us-

ing linear algebra to include the future values in the calculations. Although the future

value of a nonlinear term cannot be included in such calculations, the current value

can be included. If variation in the nonlinear index over time is sufficiently small,

i.e. ∆n(ρ, τ, η+∆η) ≈ ∆n(ρ, τ, η), the present value can be used alone instead of

averaging it with the future value. Using this approximation, the resulting numerical

scheme is

EN, M

(
p+ −

i∆ξ

4
∆ε

)
− η1 [(1 + uM) EN, M+1 + (1− uM) EN, M−1]

= EN−1, M

(
p− +

i∆ξ

4
∆ε

)
+ η1 [(1 + uM) EN−1, M+1 + (1− uM) EN−1, M−1] , (2.8)

with η1 = i∆ξ/(4∆ρ2), ∆ξ = ∆η/n0, p± = 1 ± 2η1, uM = 1/[2(M − 1)], and

∆ε = 2n0∆n, where N is the step value along the axis of propagation and M is the

radial step value. This is identical to the numerical equation of Chiron et al. [11],
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except for an extra factor of 1/2 in the i∆ξ/4 terms. (This error causes a propagated

pulse to focus twice as quickly as it should.) For the points where ρ = 0, the first

term in (2.7) is undefined; however, the substitution

lim
ρ→0
∇2

ρE = 2
∂2E

∂ρ2
when

∂E

∂ρ
= 0, (2.9)

can be made, which, because of radial symmetry, is valid at all on-axis points. Since

the simulation is radially symmetric, it can be performed in the range ρ ≥ 0, halving

the number of points. The second derivative at ρ = 0, which would otherwise depend

on the values at ρ = 0, ρ = −∆ρ, and ρ = ∆ρ, can be calculated solely from ρ = 0

and ρ = ∆ρ.

2.3 Kerr Effect

If a simulated pulse has a sufficiently high peak power and no nonlinear effects other

than Kerr self-focusing are present, the pulse will collapse to a mathematical singular-

ity after a certain distance. The critical power can be calculated by the formula [25]

Pc =
3.77λ2

8n0n2

. (2.10)

To verify that my simulation of the Kerr effect was correct, I propagated pulses with

varying peak powers, checking that that a pulse collapses only when it has a peak

power equal to or greater than the critical value. Figs. 2.1 and 2.2 show the results

for four of these simulations, with no Kerr effect, Pmax = 0.5Pc, Pmax = 0.9Pc and

Pmax = Pc. The simulations show that the Kerr effect does affect propagation at

subcritical peak powers by moving the focus forward and tightening the profile, but

collapse does not occur until the critical power is reached. This confirms that the

simulation of the Kerr effect in my code agrees with theory.
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Figure 2.1 Beam intensity profiles for four cases: (a) no Kerr effect, (b)

Pmax = .5Pc, (c) Pmax = .9Pc, and (d) Pmax = Pc. Scaling is relative to the
peak intensity in each subfigure, except in (d) where the high postcollapse
intensity would make the precollapse region invisible.
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Figure 2.2 FWHM profiles for the four cases shown in Fig. 2.1.

2.4 Plasma Generation

The plasma generation segment of the simulation is based on the Ammosov-Delone-

Krainov (ADK) model of tunneling ionization [28]. In order to calculate the change

in the index of refraction due to plasma generation as given in (2.6), the density of

free electrons Ne in each cell must be calculated. This is done in each step for each

point by integrating the ionization rate w(τ ′) over local time from the beginning of

the pulse to the current point:

ne(τ)

ntotal

= 1− exp

(
−

∫ τ

−∞
w(τ ′)dτ ′

)
. (2.11)

If the pulse variation between each time step is small, this method is valid and obviates

the needs to both track the electron density throughout the whole propagation region

and limit the propagation step size to the length of the cells, dramatically reducing

the calculation time.
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Using the electron density, the plasma frequency is given by the equation

ω2
p =

Ne(τ)q2
e

meε0

. (2.12)

where qe and me are the electron charge and mass, and ε0 is the permittivity of free

space. The Kerr index n2 is also influenced by plasma generation. As atoms are

ionized, the density of the gas reduces and n2 reduces proportionally:

n2-effective = (1− Ne

Ntotal

)n2. (2.13)

2.5 Verification of Propagation Calculations

Propagation of a Gaussian pulse as described in Section 2.3 served as a check for

errors in the simulation code. By comparing the result to the analytical solution for

a Gaussian beam and monitoring conservation of energy, the amount of error could

be determined. A pulse was propagated without nonlinear effects from z = −5 cm

to z = 5 cm in a window with a radius of 20 times the beam waist w0, 512 radial

points, and a propagation step size ∆z = 125 µm. The intensity of the result differed

from the Gaussian beam by a maximum < 0.5%. Energy, as obtained for each frame

by integrating in space and time, varied by < 0.01%. These results show that this

window is large enough to prevent the creation of boundary artifacts and that the

step size is small enough for a valid approximation of the propagation derivative.

In simulations involving the Kerr effect and plasma generation, comparison with an

analytical solution is not possible, but pulse energy can still be monitored and is

conserved to within .01%.



2.6 Using an Apertured Laser Beam for the Initial Condition 16

2.6 Using an Apertured Laser Beam for the Initial

Condition

An important motivation for performing this simulation was to investigate the role

of an aperture on the incoming pulse, as shown in Fig. 1.2. Simply propagating a

pulse through the aperture and lens to the focal region would be much too demanding

computationally, so I instead generate the initial condition for the propagation code

at a short distance before the focal region. To do this, I wrote code to perform two

sequential Fresnel integrals of the form

E(ρ, z = d) = −2πieikdei kρ2

2d

λd

∫
aperture

ρ′dρ′E(ρ′, z = 0) ei kρ′2
2d J0

(
kρρ′

d

)
(2.14)

where z = 0 is the location of the aperture. In accordance with our beam setup

(Fig. 1.2), the code first uses a Gaussian profile at an aperture to calculate the field

at the lens. This field is then multiplied by exp(−i k
2f

ρ2), the phase shift due to a

lens of focal length f , and another Fresnel integral is performed to calculate the field

of the initial condition region. In order to create a pulse with the proper curvature,

a spatial envelope of the form exp(−(R − R0)
2/l2) is applied to the field, where l is

the pulse length, R0 is the radius of curvature at the center of the pulse as given

by R0 = zcenter + z2
0/zcenter with z0 as the Rayleigh range, zcenter as the longitudinal

position of the center of the pulse, and R =
√

(z + z2
0/zcenter)2 + r2 is the distance to

the center of curvature, where z is the longitudinal position of the current point. The

numerical calculation of the fresnel integral was verified by calculating the on-axis

field strength for a plane wave diffracting through a single aperture and comparing it

to the analytical solution.



Chapter 3

Results and Conclusion

This chapter describes the application of the propagation code from Chapter 2 to sim-

ulate our experimental setup. During each simulation run, the code stores a specified

number of snapshots of the electric field, intensity, and ionization, which are saved

to a file along with the parameters of the propagation. An auxiliary program uses

these snapshots to analyze the pulse propagation and to create graphical representa-

tions of the data: a fluence (energy/area) profile, fluence full-width at half-maximum

(FWHM) measurements, peak intensities, total energy, and spectral content. Fluence,

rather than intensity, is used to calculate the beam width, since our detection system

measures total energy captured. The simulation results, using the parameters and

geometry of our laser system, agree with and explain the experimental measurements

obtained by our group [9].

3.1 Comparison with Experimental Results

The experimental parameters of the laser system used for this simulation are given in

Table 3.1. Through the Fresnel integrals detailed in Section 2.6, an initial pulse was

17
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Center wavelength 800 nm

Pulse length (FWHM) 35 fs

Initial beam width (FWHM) 11 mm

Aperture diameter 9 mm

Peak intensity in vacuum 6× 1015 W/cm2

Distance from aperture to lens 1.45 m

Lens focal length 1 m

Gas and pressure He, 80 torr

Table 3.1 Experimental parameters

created that was used as the starting condition for the propagation code 5 cm before

the nominal focus. A fluence profile of the propagation is shown in Fig. 3.1.

The results of the simulation show striking similarities to the experimental data.

The pulse width exhibits minima at about 4 cm before and 3 cm after the nominal

focus, as seen in the experimental data in Fig. 1.3. The intermediate region between

the two minima in the simulation also has a flat-top radial profile, as observed by

Painter [9]. A comparison of the FWHM profiles is shown in Fig. 3.2.

To further verify that the simulated pulse propagation corresponds to the actual

propagation of the pulse, total ionization and energy lost to ionization were calculated.

Fig. 3.3 is an ionization profile for the propagation region, which shows a long plasma

streak, similar to what we observed visually in our experimental setup, with a peak

ionization of about 2.5%. Experimental measurements were also made of the total

energy lost to ionization, showing it to be less than 10% of the pulse energy (essentially

negligible). Although the code does not attenuate the pulse energy as ionization

occurs, the energy used for ionization can be calculated by summing the electron
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Figure 3.1 A fluence profile of the simulations results using the parameters

given by Painter [9].

density to find the total number of ionized electrons and multiplying by the ionization

potential plus the pondermotive energy. The calculated total amount of energy needed

for ionization in the simulation turns out to be ∼4% of the total pulse energy, in

agreement with experiment.

The spectral shift due to the effects of the generated plasma on the pulse can also

be compared between simulation and experiment. At the nominal focus (z = 100 cm),

Painter observed a blueshift of ∼4 nm on axis. A spectral profile can be calculated for

the simulated data by applying a fast-Fourier transform to the electric field envelope,

which gives a blueshift of ∼6 nm.

The simulation qualitatively agrees very well with experimental measurements,

i.e., features such as the two foci and the radial fluence flat-top profiles occur in

the same regions, but there are small differences in quantitative results such as peak
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Figure 3.2 Fluence FWHM measurements from both experimental and sim-

ulated pulse propagation.

Figure 3.3 Calculated ionization for the region of propagation of the simu-

lated pulse.
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Figure 3.4 FWHM profiles for a unapertured Gaussian pulse and pulses

apertured at diameters of 9 mm and 18 mm.

FWHM. We have observed that small variations in the parameters, such as the in-

coming beam width, the aperture diameter, and the pulse energy, can reduce these

differences while staying within experimental uncertainties.

3.2 Analysis

To investigate the effect of an aperture, a unapertured Gaussian pulse and apertured

pulses with diameters of 9 mm (the optimal diameter found by Painter) and 18 mm

were propagated numerically from 5 cm before to 5 cm after the nominal focus. The

FWHM profiles are shown in Fig. 3.4. As would be expected, the profile of the

pulse with the 18 mm aperture closely resembles that of the unapertured Gaussian

pulse. The fluctuations in the FWHM, due to the interaction between the pulse

geometry and plasma generation, are markedly different for an unapertured and an
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Figure 3.5 FWHM profiles for pulse propagation with and without plasma

generation and the Kerr effect.

apertured pulse. The decreased aperture diameter causes the double focus profile we

have observed experimentally. The complicated effects in the laser focus seen for the

unapertured pulse are associated with the poor phase matching for high-harmonic

generation.

The influence of the Kerr effect and plasma generation can also be observed by

removing one or the other from the simulation. The FWHM profiles from these two

cases, the normal simulation, and a simulation of the pulse in vacuum are shown in

Fig. 3.5. As would be expected with our pulse power, Kerr self-focusing has little effect

on the propagation of the pulse, even without plasma generation present. Defocusing

of the pulse due to plasma generation causes the Kerr effect to have even less of an

influence on the propagation of the pulse. The effect of the medium on the pulse

propagation appears to be due entirely to plasma generation.
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3.3 Conclusions

Our numerical simulations agree well with the experimental data with which we can

compare our simulation, as demonstrated by Fig. 3.2. Owing to the extensive amount

of agreement, we can conclude that our modeling is accurate and that the Kerr effect

does not significantly influence on pulse propagation in our system. The observed phe-

nomenon of the the dual foci is therefore not Kerr-style filamentation, which requires

an appreciable value of n2I. Instead, the double focusing comes from plasma gener-

ation and the diffraction geometry from the aperture. This self-guiding [23] may be

responsible for the good phase matching that gives rise to the experimentally-observed

efficient harmonic generation. Investigation of the fluence profile and maximum in-

tensities shows that the second waist actually has a lower intensity than the first

waist. A plot of the peak intensity and peak fluence, shown in Fig. 3.6, shows that

while the fluence has two local maxima, the intensity reaches a maximum at the first

waist and then steadily decreases. The first waist corresponds to a peak in intensity

as well as fluence, but the second waist is not a second focus in the ordinary sense.

The intensity continually decreases along the direction of propagation in that region

due to an increase in the pulse length.

3.4 Directions for Further Work

Although certain features of FWHM and pulse profiles such as self-guiding and a

flat-top profile are associated with efficient high harmonic generation, the most direct

way to predict good harmonic generation is to investigate phase matching. As ex-

plained in Chapter 1, small differences in the phase within the laser pulse can result

in huge phase variations in the generated harmonic, causing destructive interference

and low harmonic output. By determining the phase of each point in a snapshot of
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Figure 3.6 Calculated peak intensity and fluence for the simulated pulse

propagation.

the electric field envelope, detailed maps of the phase variation from a plane wave

can be produced. We plan to use this such phase maps to investigate and optimize

phase matching in our setup. Experimentally, we have observed that variations in

the aperture diameter and gas pressure can influence harmonic output. By using the

simulation to predict harmonic generation efficiency, we will be able to investigate the

influence of variations in these parameters, as well as other parameters, such as lens

focal length. After we have optimized parameters in the simulation, we can modify

our experimental setup accordingly, rather than making a series of modifications to

our hardware to find optimal conditions.
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blueshift, see spectral shift
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moving frame, 10

phase matching, 2
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